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Abstract—Damped lateral vibration in an axially creeping beam with random material parameters is considered.
The temperature and imperfection density, and as a result two inelastic material parameters, are random functions
of the distance along the neutral axis. It is assumed that the material of the beam is governed by a nonlinear
Maxwell model, and that the initial tensile stress is much greater than the increment of stress caused by the
oscillation so that a perturbation technique may be employed. Two special cases are fully analyzed : (a) the random
parameters are random processes which are only slightly random, and (b} the random parameters are random
variables which are largely random. Statistical results are obtained for the lateral velocity, bending moment,
logarithmic decrement and circular frequency. It is found that in a specific example, where the beam is made of
an aluminum alloy, the lateral velocity, bending moment and logarithmic decrement are sensitive to randomness
in temperature and imperfection density, whereas the circular frequency is almost deterministic.

1. INTRODUCTION

RECENTLY, the study of the dynamic characteristics of elastic beams having random stiff-
ness parameters has received some attention (e.g., see Bliven and Soong [1]). However,
randomness is considerably more pronounced in structure and temperature sensitive
nonlinear inelastic material parameters, and this effect has been studied by Soong and
Cozzarelli [2], Parkus [3], Parkus and Bargmann (4] and Cozzarelli and Huang [5]. As an
extension of the work given in [5], the static problem of steady creep bending in a beam
with random inelastic material parameters was considered in [6]. The study of the dynamic
characteristics of nonlinear inelastic beams having random inelastic material parameters
has received virtually no attention to date, and thus we shall now turn our attention to
this problem.

The present analysis is concerned specifically with damped lateral vibration in an
axially creeping beam, where the inelastic material parameters are described in a stochastic
sense. It is assumed that the material of the beam is governed by a nonlinear Maxwell
model, composed of a linear elastic element with a deterministic material stiffness and a
nonlinear viscous element with two random parameters—a viscosity parameter £, and a
creep power n.

t This research was supported in part by the National Science Foundation under Grant No. GK-1834X,
and in part by the Office of Naval Research under Contract No. N00014-71-C-0108.
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The method of approach employed here is analogous to that used in Cozzarelli, Wu
and Tang [7]. i.e., the initial tensile stress is assumed to be much greater than the increment
of stress caused by the oscillation and as a result a perturbation technique may be em-
ployed. We then find that the nonlinear viscoelastic problem posed above is replaced by
an equivalent linear viscoelastic problem. Also, we separate the problem into two un-
coupled problems—the “‘random temperature problem” and the “random imperfection
problem™. In the random temperature problem only &, is random, whereas in the random
imperfection problem only n is random. It was shown in [5] that the random inelastic
material parameters £, and n have a similar statistical behavior, 1e., they are both log-
normal. After the application of the perturbation technique, these two problems reduce to
mathematically equivalent problems. Thus, we shall only present the details for the random
temperature problem but will give the final resuits for both problems.

In this study it is assumed that the temperature and imperfection density and con-
sequently the inelastic material parameters are random functions of the distance along the
neutral axis of the beam. We are then faced with the problem of solving two simultaneous
differential equations in velocity and bending moment containing a random process
coefficient. The analysis of this problem is difficult, and thus we shall confine ourselves to
two special cases: (a) the random parameters are random processes which are only slightly
random, and (b) the random parameters are random variables which are largely random.
In case (a) the perturbation method suggested by Keller [8] will be used to find the mean
velocity and bending moment. In case (b) we employ standard procedures to determine
the mean velocity and bending moment; the density function and statistical moments of
the logarithmic decrement and circular frequency are also obtained.

The formulation of the governing equations with lognormal statistics for the inelastic
material parameters is presented in Section 2. This is foliowed in Sections 3 and 4 by a
discussion of the two separate cases mentioned in the preceding paragraph. In both cases
a specific numerical example is considered, where the beam is made of aluminum alloy 1100.
The results are summarized in the final section.

2, FORMULATION OF GOVERNING EQUATIONS

2.1. Constitutive equation with random parameters

For creeping metals the strain depends not only on time but also exhibits a nonlinear
dependence on stress. In order to account for these effects, we shall employ the mathe-
matically convenient as well as physically plausible nonlinear Maxwell model. This model
consists of a linear elastic element with a material stiffness E in series with a nonlinear
viscous element with two parameters—a creep parameter 4 and a creep power n. Param-
cters A and » are highly sensitive to moderate fluctuations in temperature and imperfection
density, whereas E is almost insensitive to such fluctuations. Thus, it is assumed that these
two inelastic material parameters are random functions of some space coordinate X where-
as E is deterministic. Using a carat over a symbol to indicate a random quantity, the
corresponding constitutive equation in the one-dimensional case will then be written as

A(x)

64X, T) .
x| sgn(é ). (1)

1 34X, T)
E 8T

|
gx(Xs T) = +{[
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Here, the stress 8 (X, T) and strain rate 8 (X, T) are random functions of X, the time T and
possibly some other space coordinates, and sgn(é,) is the signum function defined as
1 6,>0
sgn(é,) = { A @)
-1 6,<0.
Adopting the notation used in [6], we can rewrite equation (1) in a more convenient
form as

2oy Ty o LOGXT) o o J8(X, T)FD
ex(X7 T) = E aT —-"+§c(X) _O_C— Sgn(ax)' (3)
Here,
R o, A(X)
E(X) = (m—) )

is a random viscosity parameter equal to the random strain rate obtained when 6 (X, T)
= ¢,, an arbitrary deterministic constant reference stress.

In Section 2(b) we will consider a Maxwell material with an initial constant deter-
ministic tensile stress o ;, subjected to a small lateral disturbance at T = 0. This disturbance
is translated into a small additional random increment of stress, i.e.

&x(Xv T) = axi+85-x(X= T) (5)

where &,(X, T) is a random function and ¢ is a small quantity. Also, as a result of this
disturbance the strain rate £ (X, T) assumes the form

X, T =84X) +  (X. T)+.... (6)

Substituting equations (5) and (6) into equation (3), subtracting the relation of the initial
state, and grouping the terms of order &, we obtain a simplified linear constitutive relation
for this case as

- 5 (X, T
'x(X,T)=la&"( _ )+1

E T aT ;;éc(X (X6 (X, T). U]

M

Here, use has been made of the relation o, = o,;.

For convenience, we summarize some of the statistical results pertaining to (X) and
A(X) obtained in [5]. It is assumed that §(X) is a function of the random temperature
T(X) only, and that T(X) is a homogeneous normal random process in X with mean T,
and variance 0. We define a nondimensional viscosity parameter &(X) and a non-
dimensional temperature #(X) as

ax) = X (8a)
8c0
B[T(X)-T,
HX) = _[_(_%_L] (8b)
0

where £, is the nominal value of 84X) (value at T = T) and B is a deterministic creep
constant. The parameter £(X) is related to #(X) by the expression

E(X) = X, 9
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The first order density function of &(X) is then given in terms of the variance of t by

{In &)
(2n)o & exp{ 207

fé) = 7 }U(@@) (10)
Y

where U(4) is the unit stepAfunction. Equation (10) is the lognormal probability density

function [9]. The mean E{&}, variance ¢ and autocovariance C4X,—X,) of &(X) are

given by

E{&} = e > | (11a)
0% = e’ (e — 1) > o? (11b)
Co(X | —X,) = (el X X2 ) (11c)

where C (X, — X,) is the autocovariance of #(X).

Similarly, A(X) is assumed to be a function of the random imperfection density N(X)
only, where N(X) is a homogeneous normal random process in X with mean N, and
variance oz . Specifically, we have

AX) = 1+(np— 1)exp{_@ﬂ)ﬁ:ﬁi}} (12
ng— 1
where
- ,__da

o e T TRy, (12b)

and thus

_ =l =1\ (n=1)]7,,

o= JCr)oyng(n— 1)exp{ 2( aNn{)) [m(n()_ 1)] }U(n D. (13)

This is a lognormal density function with two parameters (n, and ayng) [9], and A(X) has
the following statistical properties:

12
E{f} = 1+(n0—1)eXp{%(:Ni‘ol) } > H, (14a)
0

’ 2 ’ 2
ot = o= 17 exp [ |expd (28N ] i] > et

12 2
C(X,—X,) = (g 1)? exp{(nzwi’i) } [exp{ﬁcx(Xl—Xz)} ~1]. (140)

2.2. Lateral vibration of axially creeping beam

As a specific problem consider the free lateral vibration of a nonlinear Maxwell beam,
which is subjected initially to a prescribed deterministic axial tensile force followed by a
small lateral disturbance at T = 0. The space coordinate X in this problem will be chosen
as the neutral axis of the beam which vibrates in the XZ plane. Thus, (X, Z; T) and
¢(X, Z; T) are random functions of X, Z and T. We make the physically plausible assump-
tion that the deformation of the beam is small. Using the perturbation technique employed
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in obtaining equation (7), the classical strain—displacement relation and equation of
motion for a beam yield the following relations in the first order terms:

; WX, T
*M(X, T) oW(X, T)
T D_ —p— 0 (16)

In equations (15) and (16) the lateral velocity WX, T) and bending moment M(X, T)
=[;6{X,Z;T)Z dA are random functions of X and T for a beam with cross-section A;
p is the linear density of the beam and Q is an impulsively applied deterministic distributed
lateral load which induces a free vibration. Note that, in conformity with the small deforma-
tion assumption, the moment due to the axial tensile force Py has been neglected.

For convenience, we introduce the following nondimensional quantities:

o 0) = WX, T) 1) = MX, T o,
e B Wm ’ - meLZ EécOnO
. _[E¢ X
g2 0| p(Bome) X (17)
me EEcOnO axi L

In these equations, W, is the maximum lateral velocity along the beam at the instant
T = 0; L is the length of the beam; and W(x, t), #(x, t), ¢, t and x are the nondimensional
lateral velocity, bending moment, lateral load, time and axial coordinate respectively.
Two simultaneous differential equations in velocity and bending moment, containing
a random process coefficient, may now be obtained from equations (7), (15), (16) and (17) as

ow(x. 1) O*lx, 1)
o ox? +q (18)
10%W(x,t) omx,t) 1 .
- - —& A(x, 1)
b o E n (x)A(x)x, t) (19)

Here, b is a nondimensional deterministic constant given by

pL4 EécOnO 2

b= ( O ) @0

with [ indicating the second moment of area. We observe that & and # appear in equation

(19) side by side. Furthermore, & and A have a similar statistical behavior, i.e., they are

both lognormal [equations (10) and (13)]. Thus, the random temperature problem and the

random imperfection problem are mathematically equivalent. We shall therefore only

present the details for the random temperature problem but will give the final results for
both problems.

In Section 3 we shall consider the analysis of equations (18) and (19) for the case where

& and # are random processes which are only slightly random [case (a)], and then in

Section 4 the case where & and i are random variables which are largely random [case (b)].
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3. CASE (a)—~{f AND fi RANDOM PROCESSES (SLIGHTLY RANDOM)

3.1. Random temperature problem
Let us first consider the random temperature problem in which as we have noted only
&{(x) is random. Letting A(x) = ny, equation {19) becomes
1 o%(x, 1)  Omix. 1)
b ox* T ot

The simultaneous partial differential equations (18) and (21) can be combined to yield the
following two consecutive nonhomogeneous partial differential equations
x, 1) 5 om(x.ty 1 8*Rx ) 1 dg
& - = -
ar T T e T hae

aRxy  Blx,1)
T e te @)

+ E(x)ix, t). (21)

(22)

We will assume that the initial conditions at ¢ = 07 are homogeneous and take the load
q as
g = o(t) sin knx k=123.... (24)

where 4(t) is the Dirac delta function and k is the vibration mode. The physical meaning
of these initial conditions and the lateral load will become apparent in the next paragraph.

We may easily convert equations (22) and (23) into two consecutive partial differential
equations with zero forcing and nonhomogeneous initial conditions at t = 07, In so doing
we obtain the resulting equations

*x, 1) Omx, t)+l O*mix, f_

LR L S 25)
awg; n_ azgz)(;. f) 06
with the initial conditions
w(x, 0%) = 0 am(g,to*“) L Q7
and
Wx,0%) = sinknx  k=1,23..., QVE’%;O-Q =0, (28)

Equations (27) and (28) hold with probability one. Thus, we observe that the problem
posed in the previous paragraph is equivalent to a free vibration problem with a nonzero
deterministic velocity prescribed at t = 0*.

Let us consider a simply-supported beam. Using equations (25) and (26), we obtain
the following boundary conditions on mi{x, £} and W(x, t) respectively:

. . 4m(0,1) 9%l t)
MO0 = L 0) = — 5 =~ = =0 (29)
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and
*w(0,1)  oP(L, 1)
oxz  ox?

w(0,1) = w(l.t) = =0. (30)
Again the above relations hold with probability one.

The perturbation method suggested by Keller [8] will now be applied to differential
equation (25) with initial and boundary conditions (27) and (29) respectively.

Bending moment. In this section it is assumed that &(x) is homogeneous random process
which is slightly random, and we may then write

Ex) = 1+¢é,(x). (31

Here, ¢ is a small quantity, and &,(x) is a homogeneous random process. Substituting
equation (31) into equation (25), we obtain

(Lo+eL)m(x, 1) =0 (32)
where
2 a4 18t
LO =F+E+BW (33)
L, =& )9 (34)
1 = 641X o

The solution to equation (32) is not separable in x and ¢, and is extremely difficult to
obtain. However, utilizing the perturbation method given in [8], we may obtain an ap-
proximate expression for the mean bending moment as

E{m} = (1—eLy 'E{L,} +¢*Lg "E{L,Ly 'L, })m,. (35)

Here, m, is the solution to the unperturbed deterministic linear partial differential equation

?*mg omy 1 &*my,
o o Thaxt 0 (36)

with the prescribed deterministic initial and boundary conditions [equations (27) and
(29)]. Also, in equation (35) Ly ! is the inverse operator associated with L, and is thus an
integral operator whose kernel is the Green’s function G(x, &; 1) satisfying

2*G 9G 10°G
5+t =+ 57 = d)d(x— 37
6t2+6t+b ox* (5)o(x~<) (37
with homogeneous initial conditions at ¢t = 0~. Note that in equation (35) those terms of
order ¢ and &2 satisfy homogeneous initial and boundary conditions.

The solution to equation (36) can be assumed in the form

my = Ty(t) sin kmx k=1,23,... (38)

where T,() is a function of time ¢ only. Note that the boundary conditions (29) are auto-
matically satisfied by equation (38). Substituting equation (38) into equation (36) yields an
ordinary differential equation in 7;,. We now make the additional assumption that the



772 W, N. HuanG and F. A, COZZARELLI

vibration is underdamped. Thus, setting (kr)*/b—% > 0 and using equations (27), we
obtain
(kn)z —t/2

my = ————e Y sinrtsin knx k=123,... {39a)
bry

where the nondimensional frequency is given by

_[tkem* 1
o = it (39b)

Next, we must obtain the Green’s function satisfying equation (37). A comparison of
equations (36) and (37) indicates that the Green’s function is equal to the deterministic
bending moment which results from a unit impulse applied to the beam at the location
x = ¢ at time t = 0. This Green’s function vanishes for either ¢t < 0 or x, £¢[0, 1]. The
normal modes obtained from the homogeneous part of equation (37) with the prescribed
homogeneous boundary conditions are given by the orthogonal functions

hix) = sin jrx. (40)

We now try a solution to equation (37) in the form

G(x,&:1) _Z A&, Dh(x) (41)

whereby

o

Z n’hﬁ Z r”h + Z (Jr)*nh; = 8(Dd(x —&). (42)

The orthogonality of the normal modes h(x) can be used to reduce equation (42) to
the system of uncoupled equations

d?n; dn; (jn)* 5 - .
A —. = = 1, .3,.... 43
i +— " + 5 snysin jré  j= 12 (43)

Solving equation (43) for 7;, we obtain with the use of equation (41)

)
Y, “e"*sinrtsin jné sin jnx, t>00<x <1
Gx.E;y=4j=17; 44

0, otherwise
where r; is defined by equation (39b). Finally, with this Green’s function the inverse operator
L, ! operating on some function F(x, t) can be given by

t ot
La’F(x.t)=jf Gix, & t—1)F(E, 1) dédr {45}
ovo

Let us now return to equation (35). In order to evaluate the terms of order ¢ and &2,
we must first determine the mean &, and mean square &1 &2 of é’,(‘c) for #{x) a homogeneous
random process with mean zero and variance 62, These follow directly from equations (11)
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and (31) as

_ et 5 e¥i2e% 4]

For the term of order ¢2 we must also specify the autocovariance of £(x)[C(n) where
n = x; — x,]. The analysis would become extremely complicated if we were to choose an
exponential expression for C () as in [5] and [6]. On the other hand, the analysis is much
simpler if we choose an exponential function for the autocorrelation of & (x), i.e.

E{&,(x)8/(x,)} = &2 eI (47)

where d is the nondimensional correlation distance. The autocovariance of #(x) is then
obtained in inverse fashion from equations (11c), (31), (46) and (47) as

Cn) = In[2e%2 — | +(e2% —2¢e%/2 + 1) e~ 4] — g2, (48)
The following limiting values follow from this result:
Lim C () = o7 (49)
n—0
"LPE C(n) = InQ2e%? —1)—a2. (50)

Equation (50) gives a very small negative value for # — oo, since 7 has been assumed to
be slightly random (i.e.. o, is small). Equation (48) has been plotted in Fig. | for typical
values g, = 0-1 and d = 0-2, and we note that we still get a physically plausible exponential-
like function for C..

Using the deterministic bending moment m, [equations (39)], the Green’s function
G{x, &; t) [equation (44)], and equations (45}47), we may then proceed to evaluate equation
(35) and thereby obtain the rather complicated result

) : kn)*&, 1 :
e 2 sin r,t sin k7tx+s(—)—le_”2 [( ——+rkt) sin r,t
br, 2

2br} I

, 2km)?

+1/2 cos rkt:] sin knx—¢ br) E2e 12 {d,[(A1+A2t+A3t2)sin ril
k

. e dy
+(Aut+ Ast?) cos ] sin knx+ ) |:d sin kmx + (d" 2 51(3k)) sin jnx]
1

ik

(A + A1) sinr,t+(AY + AP1) cos rt+ AY) sinrt+ AY) cos rit]

+ (2d‘” d90 3,0 [AY) sin it + (A} + APyt) sin rjt +(AYY + AYLe) cos rt

Tipas 3

+ A} cos r,t] s1n]7tx+z Z 2d$9 —dP 8y - 55— G844 2y )AL sin 1yt
;l%f'ﬁ#l

+ A§) sin rit + ASY sin rjt + A$) cos rt + AS) cos rig + A$Y) cos rt) sin mx} (51)

where J;; is the Kronecker delta.
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cln) d o0
00l
0,701
0005+ 4:02
e -0
. ) P
-0 ~05 0 05 10
n
F1G. 1. Autocovariance of t—<case (a).
In equation (51)
_ 4ri 43 4. = 1
o6 I 4n
4r2 —1
Ay =k Ay = —rA
3 16r2 4 A1
A= —pd 40— @ri =g —r})—2ri(1 —4r})
PT A 6 e
) 1 . 21y
AY = AD = -
™ - S ri-r?
2
A9 = — 4ri—1 A9} = rk(lz—4r§-)2
4rk(rf —rj) 2rj(rk —r5)
. 4r2 —1
) — _ gy AW = — k
AY} A 12 4r? —rf)z
A9, = r2r2(dri = )+ (1 —4r2)(rf —r})] AV, = -,
8r}(rf —r?)? 2r(ri—r})
LAY L —rdl—4r)
A4 = 28 AUy — K T
13 2 16 8ri(r; —13)
y 4r2 -1
AV = — 4u) A = — k
v e R A (R
i rdl—4rf) i rd1—4r?)
AR = 7 3 A3 = ~ 3 vz
4"i(rf_r.‘)(rj‘ri) 4rj(rj_ri)(rk_rj)
. r - r
AW) = — Kk Ab) = — k
e 2 i)
A4 = il

2
(rf—r]?)(rf—ri)

(52)
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and
3+8d%k*n?  8d*k*n* ~1/d
d, = 2dC, + 2 (e -1
qo = Y+ + Bk m*[(— 1) Te 1 —1]
S e le ] (dCPCYy
g = A+ (= D - 1)
’ C,CPCy
1
4= e
g = P A (=D e - 1)
T CYCY/d +4jn?)
i 1
49 = 2P
o PR T (D e (1 (= 1))
T dZC(ZJ)C(:i”(l/dZ+(l—])27'[2)(1/d2+(l+1)2n2)
Y =
2dCY
where
1 2.2
¢, = E§+4k n
9
= N2,.2
ng) - d2+(kij) .

775

(53)

(54)

As a particular example we will consider the beam treated deterministically in [7],
namely a uniform rectangular cross-section beam made of aluminum alloy 1100. The
cross-sectional dimensions are taken to be 2 in in width and 3 in in depth, and the length of
the beam is taken as 36 in. The mean temperature of the beam is chosen as 260°C and the
axial stress ¢,; = ¢, is taken equal to 3000 psi. The material properties are given in Table |

(see [7]).

TABLE 1. MATERIAL PROPERTIES OF
ALUMINUM ALLOY 1100 (260°C)

p=12x10"1° 1b-h2-in~2
E = 80x10°¢ psi

no = 4.55

o = 364 x 10° psi-h!/

Using the data given in the previous paragraph and in Table | and taking the vibration

mode k to be one, we obtain the numerical values given in Table 2.
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TABLE 2. NUMERICAL VALUES

I =45 in*
a.\"
€ = (l) = 0415 hr™! [equation (4)]
4o
L[ Eé g2
b=P 8—""3) — 1419x 10+ (equation (20)]
El\ oy

(km)* 1 .
b 1 T 828-68 for k = 1 [equation (39b))

-

It may be seen from Table 2 that, as a consequence of the small damping in this example
(b« 1), ry » 1 and |[rf —rf| » 1 for j # i. We then find that, for any values of ¢, and d.
the expression of order ¢ in equation (51) is completely dominated by the rt sin r,t term
and the expression of order &? is completely dominated by the d, A5t sin r,t term. Thus,
we may now considerably simplify the expression for E{s}, with negligible loss in ac-
curacy, to the following form which is separated in x and ¢:

n 7!2 gll — _ . .
E{m} = —Br(l—sT—HZZdlAséftz e~ "2sinr,tsin nx. (55)
1 2

With the use of equations (17), (20), (39b) and (52), equation (55) may be rewritten in

terms of the physical parameters and dimensional time T (in seconds) as

E{ﬂ*} = (1 —e&,aT+¢6%2d,E20*T?) e T sin BT sin nx (56)
m
where
1 (Eé.ng 1 [=\? JEI
= 2500 = aal7 — 57
* 7200( o ) b 3600(L) p (>7a)
and where m* is a normalizing factor defined as
p
Y=g o 57b
" 2n%a (570)

In the present example o = 0-7 and = 11587, and thus we see that as a consequence of
small damping f§ > o.

For practical purposes it is sufficient to confine our attention to the time interval over
which the exponential function in equation (56) decays to one per cent of its initial value,
ie, 0 < T < 46/x. Within this interval, we will consider that the “slightly random™
assumption implies that °2d,620*T? « 1 in equation (56). This requires that

3+ 8d%n? +8d27r4(e"/"—1) -1 (58)
4d(1/d* + 4n?) (1/d* +4n%)?

267 = 2 2% 4] « {42-32[

Equation (58) will be used as a condition on o, for a given d.

In Fig. 2(a), a single curve showing the decay of E{#/m*);yp (LMP = locus of maximum
points) for the mean bending moment [equation (56)]] at the midspan of the beam (x = 3)
is plotted vs time T in seconds for typical values ¢, = 0-1 and d = 0, 0-2, co—all of which
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T

FiG. 2. Decay curves—case (a). (a) LMP of mean bending moment and velocity. (b) deviation from
LMP of deterministic bending moment and velocity.

satisfy condition (58). The deviation of the LMP of the mean bending moment from the
LMP of the deterministic bending moment, [E{/m*} —my/m*], yp, has been plotted in
Fig. 2(b) (solid curves). Note that for d > 0 this deviation vanishes at a root T = T,, and
that the LMP of the mean bending moment is less than the LMP of the deterministic
bending moment in the interval 0 < T < T, and is greater for T > T,. We also see that

there exist two critical times T, and T, where the random effect is an extremum. We

max

obtain T, and these two critical times from equations (56) and (57) as

_ &
T = 20,6 (59}
Tmin Tr 1— Tf 1

With ¢, =0-1 and d = 02 in this example equations (59) yield T, = 3-147 sec,
T.in = 0-877 sec and T,,, = 5-131 sec, which approximately equal 580, 161A and 946 cycles
of vibration respectively. Also, for these values equations (11a) yield E{&} = 1-005, and
Fig. 2 yields E{M/my} qp = 09977 at T = T,;, = 0-877 sec. Thus, the bending moment is
sensitive to small variations in temperature.

Velocity. Turning now to the velocity, we obtain from equation (26)

0 .. 0? .
é—t(E{W} = —rxz(E{m}) (60)
for w(x, t) and #i(x, t) mean square differentiable with respect to time ¢t and axial coordinate
x respectively. Substituting equation (51) into equation (60), integrating the result with
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respect to ¢, and then using initial conditions (28), we obtain

1 . k) I .
Ew} = rAe“”z(% sin rt + r; cOs 1,t) sin knx-i-s( ; 2 e"’z( ksm r.t—1tcos rkt) sin knx
k
- (ll:n) &%e “/Z{d (km)*[(B, + Byt + B,t?) sin r,t + (Bt + Bst?) cos ryt] sin knx
k

= ; . 0 oda . 4 o
+ 3 [d‘ﬁ’(kn)z sin knx + (dg”—f()j(m)(jn)z sin jnx] [(BY+ BYt) sin rt

j=1
Gtk
+(BY'+ BY't) cos r .t + BY} sin r,t + BY) cos r;t] + Z P —d¥8 3 i
Ik
- (jm)*[BY), sin rt +(BY} + BY)t) sin rjt + (BY} + BYL1) cos rjt + BY) cos r,t]

PO
ssinjrx+ Y, Y A —d90 - 25— d§ 0+ 2 ) i) (B sin 1yt

i=1 j=1
itkEjED
+ B sin rit + BSY) sin r;t + B cos rit + BYY cos rir+ BY) cos rjt) sin in x} (61)
In equation (61)
-3 [
B, = B, = —
oo z 4r;
B,
By =~ B, = —nB,
; @ri—r?)
B =—-rB BY) = —~ L
° e B HUEE
. —1 : —2r
BY — BY) = k
Tkt 8 (ri-r)?
() (j)
B§' = 57_ BY) = Bi
2r, 2r;
BY) — —BY BY) — —1
= T
2 2
. rlry — . r
BY) _L_z)z BYy = o5
4r (rf—r?) 2riri —r3)
() () () BY.
BYy = 2r.BY; Bis = o
j
BY) = — BW BU) — — 1
17 — 15 18 —

Arg—r)ri—ri)
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B‘x‘é’ = L (2"3 = 2 rzk 32
2
2r(r—rHri—r) 2rr}—ri)ri—ry)

N r . e
By) = k B{) =

] ]

J

. ¥

BY) = k (62)

g
(rj - rlz)(ri "‘7'12')

Again as a specific example we will consider the beam with small damping discussed
in [7]. Proceeding as in our analysis of the bending moment, we find that the expression
of order 1 in equation (61) is completely dominated by the r, cosr,t term, the expression
of order ¢ is completely dominated by the ¢ cos r,t term, and the expression of order ¢ is
completely dominated by the d, Bst? cosr,t term. Thus, we may in this case considerably
simplify equation (61) for E{Ww}, with negligible loss in accuracy, to the following form:

E{w} = (1—&&,aT+e22d,6302T?) e T cos BT sin mx. (63)

Here, T is the time in seconds, and « and § are as defined in equations (57).

The expression for E{W} given by equation (63) is identical with the expression for
E{m/m*} given by equation (56} except that sin ST is replaced by cos ST. Since f§ » 1,
these two expressions give essentially the same locus of the maximum points. Thus, Fig. 2
also applies in this case. The velocity is clearly sensitive to small fluctuations in tem-
perature.

3.2. Random imperfection problem

As we have previously stated, the random imperfection problem and the random
temperature problem are mathematically equivalent. Instead of using equation (31) we
start with the relation

A(x) = no[l +&fi((x)] (64)

where #,(x) is a homogeneous random process. Its mean 7, and mean square ﬁ? are ob-
tained from equations (14) and (64) as

{ng— I)[exp{%(fﬁfmi) 2}— 1]
iy = Do (65)

Nt
’ 2 +t\ 2
(no—l)z[exp{z(ffv—ng-) }_—«ZZexpg\l(M +1
-5 o — 1 2 Ro — i
n = e . (66)

The autocorrelation of A,(x) is assumed to be
E{ft,(x,)ty(x,)} = n e7hle (67)

based upon the same argument given in Section 3.1.
Proceeding as in the random temperature problem, we obtain the same results [ie.,
equations (51), (56), (58), (59), (61) and (63)] with the substitutions

&~ & -nl. (69)
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The curve shown in Fig. 2(a) also applies in this problem for values oyn, = 04 and d = 0,
0-2, co—all of which satisfy condition (58) with the substitutions (68). The deviation of
the LMP of the mean bending moment and of the mean velocity from the LMP of the
deterministic bending moment and velocity have also been plotted in Fig. 2(b) (dashed
curves). For the values ayn, = 0-4 and d = 0-2, equations (59) with the substitutions (68)
yields E{fi/ny} = 1-005, and Fig. 2 yields E{m/mo} mp = E{W/Wo}p = 09974 at T = T,
740, 179 and 1088 cycles of vibration respectively. Also, for these values equation (14a)
yields E{f/n,; = 1005, and Fig. 2 yields E{fi/m,} yp = E{W/ Wy} mp = 09974 at T= T,
= 0973 sec. Thus, the bending moment and the velocity are also sensitive to small
variations in imperfection density.

We conclude that both bending moment and velocity are sensitive to small fluctuations
in temperature and in imperfection density. This differs from the results obtained for the
3-bar truss in [5] and statically loaded beam in [6], where the stress was essentially deter-
ministic and only the velocity was sensitive to fluctuations in temperature and in
imperfection density.

4. CASE (b)—& AND i RANDOM VARIABLES (LARGELY RANDOM)

4.1. Random temperature problem

Again let us first consider the random temperature problem in which only & is random.
In this section & is taken to be a random variable which is largely random. Thus, whereas in
equation (31) ¢ may no longer be used as a perturbation parameter, & (x) is simply a random
variable &, . It follows that the consecutive differential equations (25) and (26) may be
simplified to two uncoupled linear differential equations in #ix, t) and W(x, t), each with
a random constant coefficient, i.c.,

O’mx,t)  Omx,t) 1
g —
or? * ot b ox*

a*mlx.t)

=0 (69)

0*W(x, t)+g0v©(x, n 1 a*(x, 1)
ot? ot b oxt

(70)

The deterministic initial conditions are given by equations (27) and (28), and the deter-
ministic homogeneous boundary conditions are again given by equations (29) and (30).
Note that whereas equations (69) and (70) are identical, the initial conditions on i and
w are different. We shall only present the details of the velocity solution but will give the
final results for both velocity and bending moment.

Velocity. The solution to equation (70) is separable, and may be expressed as the
product of a random function of time and a deterministic function of space in the form

Wix, 1) = Ty(t)sinknx k= 1,23;..., (71)

Substituting equation (71) into equation (70), solving the resulting ordiﬁary differential
equation in Ty(t) with the initial conditions (28), and using equations (17), (20) and (57),
we obtain the velocity for the underdamped case (6 < fk*/a) as

W(x, t) = 2 kai’;z — gzje““g’f sin(oa/[(Bk%/a)* —E2 1T +B) sinknx k= 1,2,3,... (72)
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where the phase angle is given by

2,32 22
f =tan~! */—[(ﬁ%)—f—]) (73)

Since there is zero probability that & in this case is greater than k?/a, the lognormal
density function for & [equation (10)] must be replaced by a truncated lognormal density
function. Thus, we let

o 1 (In &)? o e a2
fl&) = Wexp {——MT}[U(& U(& — Bk* /)] (74a)
and ,
Q, = ter [lﬂ(ﬁ—:ﬂ] (74b)

where Q, is such that equation (74a) satisfies the normalization condition. Note that
erf x is the error function defined as

1 * 2
erf x = &J‘ e Y2 dy. (75)
J@2m) Jo

The mean E{&} and variance o2 based on the truncated lognormal density function
[equation (74a)] are given by

. H
E{8} = te%il? 7
(& a ¢ (76a)
and ,
H Q,H
2 _ (2] o222 o2
= () ity o
where
2/ 0 .2
H, =%+erf(—~—~ln(ﬂk /%) "’) (77a)
200 .2
H, = %+erf(w). (77b)
0.‘[

Expressions for the first order density function and the statistical moments of W(x, f) may
be found from equations (72) and (74). For example, the mean velocity is given by
— (In&)?

Bk? sin knx [P P {— (a€T+( n02) )}
= i i k?/a)? ~&T+0)d&. (78

i Jy AT e (Bl 6T 028, 7

Decay curves for the mean velocity [equation (78)] at the midspan of the beam dis-
cussed in the previous section with k = 1, and o, = 0-2 and 0-5 are presented in Fig. 3.
In this example § >» a (small damping), and as a result the normalization factor Q, is very
close to unity [equation (74b)] and the density function of the phase angle 8 is sharply
peaked around =n/2 [equation (73)]. Results have also been obtained for ¢, = 01 in the
present case (not plotted in Fig. 3) and these results checked very closely with the curves
for o, = 0-1 and d = oo in Fig. 2 for case (a). For these values of ¢, and d, & in both cases
is essentially a random variable which is only slightly random.




W. N. HuaNG and F. A. CozZZARELLI

782
10 -0
x=0-5 "
k=1 z
S _
»
5 osf %05 Jos <§lE
— ]
W W
c,=0-2
(o)
0 - i i n o]
o] t 2 3 4 5 6 65
T
0-03F (b)
. L
H
-
— o0l F
© o0l
!
<:§ [¢]
W
- A
-002 —T L A n A A ~002
2 3 4 S 6 65

F1G. 3. Decay curves—case (b). (a) LMP of mean velocity and bending moment. (b) Deviation from
LMP of deterministic velocity and bending moment.

The logarithmic decrement J, a quantity widely used as a measure of damping, is

given by the expression
W,
0 =In|t 79
) ”
where W, and W, are the velocities at two successive maxima. It then follows from equation

(72) that R
&
2n (80)

§=—— =
VIBK j0)? - &2

Also, the circular frequency in cycles per second follows as

& :ﬂw_ (81)
2

For convenience, we rewrite equations (80) and (81) in nondimensional form as
§ _ &Y /0* ~ 1]
50 JUBR 7] (822)
& Bk /w)* — &7
B 82b
oo JIBR—1] (820)

where J, and w, are the nominal values (at T = T;) given by

2n _ B/ 1] )

Y (T oy B P
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Given that & is truncated lognormal [equation (74)], the density functions of 6/, and
&/ay, follow from equations (82) as

8y YI(BK*/a) —1] [n(Y,(Bk*/)(8/80))])* ( k2 )
f(;o) —(5/60)9_——101\/(%)“ {— 202 }U 5 (84a)

Y, = [(E)ZJr(ﬁf)z_l]_% (84b)
50 o
and

wy (m/wo)[(ﬁkz/a)z—— 1] {ln 21)2 w w ﬁkz_/f‘
f (5) =T Z Qo don P {*702 }[U(a)“U(wo J[(ﬁkZ/aF?TJ)] (®5)

Bkz 2 t
-2

L)

Equation (84a) has been plotted in Fig. 4 for the previously discussed example (solid
curves) with k = 1 and typical values for o,. The lower limit on the logarithmic decrement

25 T t ¥ T T 3
N ‘s
A -0y 7,208 Random temp. prob.
'
2o i ‘\ -—-~ Random imp. prob. 4
i\
\}
[s] o |
o
«
~
@<
Jiof .
05 e

35
878,

F1G. 4. Density function of §/8,—case (b).

(6/05 = 0) corresponds with & = 0, while the upper limit (6/6, — o) corresponds with
the cutoff & = f/a. Equation (85a) has also been plotted in Fig. 5 (solid curves) for the
same values of k and o,. Here, the lower limit on the circular frequency (w/w, = 0) cor-
responds with the cutoff & = f§/a, while the upper cutoff (w/wg = (ﬁ/a)/\/{(ﬁ/a)z—lj)
corresponds with £ = 0,

The means and the standard deviations of §/8, and ®/w, are readily obtained by
numerical integration. For o, equal to 0-2 and 0-5, values of these statistical properties and
those for & [equations (11)] are given in Table 3.
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F1G. 5. Density function of &/w,—case (b).
TABLE 3. MEANS AND STANDARD DEVIATIONS OF 8/, AND ®/w,
o, E{&) o, E{8/5,) Tors E{®/w,) Ooto
02 1-0202 0-2061 10202 0-2061 0999999 00012
05 1-1331 0-6039 11331 0-6039 0999590 0-0203

It may be seen from Table 3 that in this example the statistics of the logarithmic decre-
ment are numerically equal to the statistics of the material parameter &. This follows
directly from equation (82a) since the density function of & peaks near value 10 and
B/a > 1 (small damping). Applying the same argument to equation (82b), we find that
the density function of &/w, is very sharply concentrated near 1.0, and this is apparent in
Fig. 5 and Table 3. Thus, we find in this example that whereas the logarithmic decrement
is sensitive to fluctuations in temperature, the circular frequency is almost insensitive to
such fluctuations.

Bending moment. Since equations (69) and (70) with their associated initial and boundary
conditions are mathematically similar, we may proceed in an analogous manner to obtain
the bending moment and its statistics. We obtain for the bending moment

—(Bk)? L L
W\/{(;]ljz/)a————)z——_?zle‘“” sin(oy/[(Bk*/o)> —&21T) sinknx k= 1,2,3,... (86)

and for the mean bending moment

m(x.t) =

exp {— (cxé"T+Ln ¢) 2)}
2 kZ in k Bk2fa - 2 2 ) . _
{ml} e Ml v e e CNC LU L

where m* is defined in equation (57b).
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The expression for E{f/m*} given by equation (87) is identical with the expression for
E{W} given by equation (78) except that here the phase angle 8 is equal to zero. Due to the
high frequency in the previously discussed example we may expect that the locus of maxi-
mum points in that example is the same for bending moment and velocity. Thus, Fig. 3
also applies in this case. Likewise, equations (82), (84) and (85) for §/8, and d/w, and their
density functions also hold for the bending moment solution. Thus the bending moment
and its logarithmic decrement also show significant random fluctuations as the tem-
perature fluctuates.

4.2. Random imperfection problem

Velocity. We now turn to the random imperfection problem in which only # is random.
In this problem W, 0/d, and &/w, can be easily obtained from equations (72), (73), (82) and
(83) in the random temperature problem with the substitution

& — ang. (88)

Now, &, and w, are nominal values evaluated at N = N,. The underdamped restriction
in this problem requires that

k2
<P (89a)

where
o = a/n,. (89b)

Again, since there is zero probability that i in this case is greater than fk?/o’, the log-
normal density function for 7 [equation (13)] must be replaced by a truncated lognormal
density function. Thus, we write

B ne—1 1{ny—1\2 n—111° pk?
Jtn)= QZ\/(2n)aNn£,(n— l)exp {-5( oo ) I:ln(no— 1” } [U(n~ D= U( o )] (90a)

Q,=3 +erf[ (M—)] (90b)
onNg —1

The mean E{A} and variance ¢?2 are then given by

L H; 1 oy \?

1+Q_2(n°—l)eXp{§(no-l) } (91a)
- & : 12 ontip \ 2| [Q.H, onp |\’

g e (i e (E R T

_ [ln((ﬁkz/d )= 1) ( aNo ) 2]} (©22)
iy no— 1
H, = %+erf{n ~1 [m((ﬁ K/ ) 2( on'lo ﬂ} (92b)

no‘l no—‘l

=
=~
f

where
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Given that # is truncated lognormal [equation (90a)], the density functions of §/8,
and &/w, are obtained from equations (82) with substitution (88) as

=)

(no— I)( ;
é
‘— - Yz]QZ\/(iZn)aNné,

o

LS 2
__.29___2. U[i.._l_\/(W)] (93a)

Bkz 2
ex --1»(”0_1)2 In ( il )
P73\ ne— DY, 3o no\ \ Bk —1
T8\, B -
Y, = li(()\bg) +T (93b)

Z(Z, — 1),/ 2m)oyng RA N ng—1
o o (Bk?ja')? — 1
'{U(&)“U[«TO'J ((ﬂkZ/a'F—T%)]} %
B Bk 2 @ 2 ﬁkz 2 5 ¥
=L 1) )t o4

Equations {93a) and (94a) have been plotied in Figs. 4 and 5 respectively (dashed
curves) for the previously discussed example with k£ = 1 and typical values for oynj. The
means and the standard deviations of 8/, and @&/w, are also readily obtained. For
oy = 0-8 and 2.0, values of these statistical properties and those for 7 [equations (14)]
are given in Table 4.

A2 - ey

TABLE 4. MEANS AND STANDARD DEVIATIONS OF 6/8, AND t/w,

oyt E{f/ng) Tping E{g/éo} T80 E{®/wo} wjwo
0-8 10201 01827 1-0201 0-1827 0999938 0-0079
2.0 11342 0-5589 1-1342 0-5589 0994273 00755

As in the random temperature problem we find that in this example the statistics of the
logarithmic decrement are numerically equal to those of fi/n,. and that the density function
of d&/w, is very sharply concentrated near one. Thus, we again find that whereas the
logarithmic decrement shows significant random fluctuation as the imperfection density
fluctuates, the circular frequency is almost deterministic.

Bending moment. The bending moment for the random imperfection problem may be
obtained from equation (86) with the substitution (88). We then find that the statistics of
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the bending moment are identical with those of the velocity, and thus require no further
discussion.

5. SUMMARY OF RESULTS

The present study is an investigation of the effect of randomness in the material
parameters &, and # on damped lateral vibration in an axially creeping beam. The random-
ness in these parameters results from randomness in the temperature and imperfection
density, which have been assumed to be independent homogeneous normal random
processes. Two separate cases have been considered, ie., (a) & and A random processes
which are slightly random, and (b) & and # random variables which are largely random.
In each case the problem has been separated into two uncoupled parts—the “random
temperature problem” and the “random imperfection problem™. In the random tem-
perature problem only &, is random, whereas in the random imperfection problem only
n is random. For both cases a simply-supported nonlinear Maxwell beam made of
aluminum alloy 1100 has been taken as an example. In this example the damping is small,
and the vibration is underdamped.

In case (a) we have obtained the mean bending moment and velocity by using ex-
ponential-like autocovariances for the temperature and the imperfection density. As a
consequence of the small damping, very simple and useful expressions for the mean
bending moment and the mean velocity have been obtained. Two critical times, where the
effect of material parameter randomness on the bending moment and velocity is an ex-
tremum, have been found. It has been observed that both the bending moment and velocity
are sensitive to randomness in temperature and in imperfection density. This differs from
the results obtained for the 3-bar truss in [5] and statically loaded beam in [6], where the
stress was essentially deterministic and only the velocity was sensitive to such randomness.

In case (b) we have found the means of the velocity and the bending moment. Com-
paring these means with those in case (a), we have observed that the two cases give
equivalent results when the correlation distance in case (a) is large and the standard
deviation in case (b) is small. The statistics of the logarithmic decrements and circular
frequencies for the velocity and bending moment have also been presented. It has been
found that as a consequence of the small damping the velocity, bending moment and their
associated logarithmic decrements are sensitive to randomness in temperature and in
imperfection density, whereas the associated circular frequencies are almost deterministic.
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Abcrpaxt—Vcenenyertcsa 3aryxaroiliee nonepeunoe xonebexue 6ankn ¢ oceboil monlyvecTbio u cnydainbimMp
mapamMeTrpaMu mMatepuana. TeMneparypa u mWiIOTHOCTH HEMPABHIBHOCTEN, ¥ B Pe3yAbTaTe, 1Ba HEYNIPYTHX
napaMeTpa MaTepHana ABASIOTCH ClIy4aiubiMe QYHKUMAMHK PACCTORHYA BROJL HEHTpanbHoi ocu. Tlpen-
nonaraeTcs Matepuan Gankd B BuOe Moaend Makcsesia, M TAKKe, YTO HavyanalNbHOe HanpskxeHwe
PACTAXEHHS 3HAYUTENBLHO GONblle N0 CPABHEHWIO C TIPUPOCTOM HANPSKEHUS BCIEACTBHEe KosnebaHus,
3aTeM, MOXHO MIPUMEHUTH METOH BO3MyIeHni. UceneayoTes NoAHOCTBIO Ba CeUMasIbHBIX Cliydas: /a/
CnyyaiHbie MapaMeTPLl ABAIOTCH CYYallHbIMH NPOUECCaMu, KOTOPBIE TONBKO Clierka ciiyuaitnbi, /6/
cnyyaiHple MapaAMETPbl ABIAIOTCH CYYAHHBIMY TIEPEMEHHBIMH, KOTOPBIE B 3HAYNTENBLHOK Mepe cryuaiitbl,
Tony4aoTcs CTATHCTHYECKHE PE3YJILTATEI AN TIONEPeYHol CKOPoCTH, MOMeHTa niruba, norapudmutec-
KOTO AEKPEMEHTA ¥ Kpyrosoit uacrorsl. Haxomures, yro ana cneumduyeckoro npuMepa 6anxu, uirotro-
BIIEHHOH M3 AMIOMHHHEBOrO CIUIABA, INOAEPEYHAN CKOPOCTH, MOMEHT H3rmba u norapmdmudeckuii
JEXPEMEHT YYBCTBUTE/ILHBEL K CJIYYAMHOCTH TEMIEPATYPHLI W TUIOTHOCTH HEMPaBWIBHOCTEH, TOTAa Kak
KpyroBas 4acToTa IMOYTH JETepMUHIRYECKA.



