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Abstract-Damped lateral vibration in an axially creeping beam with random material parameters is considered.
The temperature and imperfection density, and as a result two inelastic material parameters, are random functions
of the distance along the neutral axis. It is assumed that the material of the beam is governed by a nonlinear
Maxwell model, and that the initial tensile stress is much greater than the increment of stress caused by the
oscillation so that a perturbation technique may be employed. Two special cases are fully analyzed: (a) the random
parameters are random processes which are only slightly random, and (b) the random parameters are random
variables which are largely random. Statistical results are obtained for the lateral velocity, bending moment,
logarithmic decrement and circular frequency. It is found that in a specific example, where the beam is made of
an aluminum alloy, the lateral velocity, bending moment and logarithmic decrement are sensitive to randomness
in temperature and imperfection density, whereas the circular frequency is almost deterministic.

1. INTRODUCTION

RECENTLY, the study of the dynamic characteristics of elastic beams having random stiff
ness parameters has received some attention (e.g., see Bliven and Soong [1]). However,
randomness is considerably more pronounced in structure and temperature sensitive
nonlinear inelastic material parameters, and this effect has been studied by Soong and
Cozzarelli [2], Parkus [3], Parkus and Bargmann [4] and Cozzarelli and Huang [5]. As an
extension of the work given in [5], the static problem of steady creep bending in a beam
with random inelastic material parameters was considered in [6]. The study of the dynamic
characteristics of nonlinear inelastic beams having random inelastic material parameters
has received virtually no attention to date, and thus we shall now turn our attention to
this problem.

The present analysis is concerned specifically with damped lateral vibration in an
axially creeping beam, where the inelastic material parameters are described in a stochastic
sense. It is assumed that the material of the beam is governed by a nonlinear Maxwell
model, composed of a linear elastic element with a deterministic material stiffness and a
nonlinear viscous element with two random parameters-a viscosity parameter Bc and a
creep power n.

t This research was supported in part by the National Science Foundation under Grant No. GK-1834X,
and in part by the Office of Naval Research under Contract No. NOOOI4-71-C--D108.
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The method of approach employed here is analogous to that used in Cozzarelli, Wu
and Tang [7], i.e., the initial tensile stress is assumed to be much greater than the increment
of stress caused by the oscillation and as a result a perturbation technique may be em
ployed. We then find that the nonlinear viscoelastic problem posed above is replaced by
an equivalent linear viscoelastic problem. Also, we separate the problem into two un
coupled problems-the "random temperature problem" and the "random imperfection
problem". In the random temperature problem only Cc is random, whereas in the random
imperfection problem only n is random. It was shown in [5J that the random inelastic
material parameters Cc and n have a similar statistical behavior, i.e., they are both log
normal. After the application of the perturbation technique, these two problems reduce to
mathematically equivalent problems. Thus, we shall only present the details for the random
temperature problem but will give the final results for both problems.

In this study it is assumed that the temperature and imperfection density and con
sequently the inelastic material parameters are random functions of the distance along the
neutral axis of the beam. We are then faced with the problem of solving two simultaneous
differential equations in velocity and bending moment containing a random process
coefficient. The analysis of this problem is difficult. and thus we shall confine ourselves to
two special cases: (a) the random parameters are random processes which are only slightly
random, and (b) the random parameters are random variables which are largely random.
In case (a) the perturbation method suggested by Keller [8] will be used to find the mean
velocity and bending moment. In case (b) we employ standard procedures to determine
the mean velocity and bending moment; the density function and statistical moments of
the logarithmic decrement and circular frequency are also obtained.

The formulation of the governing equations with lognormal statistics for the inelastic
material parameters is presented in Section 2. This is followed in Sections 3 and 4 by a
discussion of the two separate cases mentioned in the preceding paragraph. In both cases
a specific numerical example is considered, where the beam is made ofaluminum alloy 1100.
The results are summarized in the final section.

2. FORMULATION OF GOVERNING EQUATIONS

2.1. Constitutit'e equation with random parameters

For creeping metals the strain depends not only on time but also exhibits a nonlinear
dependence on stress. In order to account for these effects, we shall employ the mathe
matically convenient as well as physically plausible nonlinear Maxwell model. This model
consists of a linear elastic element with a material stiffness E in series with a nonlinear
viscous element with two parameters-a creep parameter A and a creep power n. Param
eters ..{ and n are highly sensitive to moderate fluctuations in temperature and imperfection
density, wherea9'E is almost insensitive to such fluctuations. Thus, it is assumed that these
two inelastic material parameters are random functions of some space coordinate X where
as E is deterministic. Using a carat over a symbol to indicate a random quantity, the
corresponding constitutive equation in the one-dimensional case will then be written as

(I)



(2)
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Here, the stress 11x(X, 1') and strain rate tx(X, 1') are random functions of X, the time l' and
possibly some other space coordinates, and sgn(11x) is the signum function defined as

{
I I1x > 0

sgn(a) = A

-1 (1x < O.

Adopting the notation used in [6J, we can rewrite equation (1) in a more convenient
form as

Here,

" (X T-) = ~ oax(X, 1')+" (X)jaAX, T)!nIX) ("" )
l>x, E 01' Sle (1c sgnu x • (3)

te(X) = (1~~») nIX) (4)

is a random viscosity parameter equal to the random strain rate obtained when ax(X, T)
= (1e' an arbitrary deterministic constant reference stress.

In Section 2(b) we will consider a Maxwell material with an initial constant deter
ministic tensile stress (1xi' subjected to a small lateral disturbance at l' O. This disturbance
is translated into a small additional random increment of stress, i.e.

I1x(X, 1') = (1x;+l>8x(X, T) (5)

where 8x(X, T) is a random function and l> is a small quantity. Also, as a result of this
disturbance the strain rate tx(X. T) assumes the form

(6)

Substituting equations (5) and (6) into equation (3), subtracting the relation of the initial
state, and grouping the terms of order e, we obtain a simplified linear constitutive relation
for this case as

(7)

Here, use has been made of the relation (1e = (1x;.
For convenience, we summarize some of the statistical results pertaining to te(X) and

n(X) obtained in [5]. It is assumed that te(X) is a function of the random temperature
T(X) only. and that T(X) is a homogeneous normal random process in X with mean 10
and variance (1}. We define a nondimensional viscosity parameter C(X) and a non
dimensional temperature r(X) as

A(X) = B[T(X) - To]
1: T~

(8a)

(8b)

where 8co is the nominal value of ec(X) (value at T = To) and B is a deterministic creep
constant. The parameter C(X) is related to r(X) by the expression

C(X) = etlX ). (9)
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The first order density function of et(X) is then given in terms of the variance of r by

" 1 {on8)2} ,
J(8) = /(2 ) 8' exp --..,-2- U(e)

v n (Jt' ...(Jt

(10)

where U(8) is the unit step function. Equation (10) is the lognormal probability density
function [9]. The mean E{8}. variance (J~ and autocovariance C,g(X 1 - X 2) of et(X) are
given by

E{t} = e"~/2 > 1

2 2 2 2
(J8 e"'(e", -1) > (Jt

C
8
(X

1
-X

2
) e";(eC,(Xl~X2) I)

(lla)

(lIb)

(lIc)

(12a)

where Ct(X I -Xl) is the autocovariance of!(X).
Similarly. n(X) is assumed to be a function of the random imperfection density N(X)

only. where N(X) is a homogeneous normal random process in X with mean No and
variance (J~. Specifically, we have

A { n~[N(X)-No)}n(X) = 1+(no-l)exp - ---
no-I

where

no = AI.
N=No

I dA Ino = ---=
dN N=No

(l2b)

and thus

(13)1).J(n) = J(2n)::~~~n-l) exp{ -~( n:N~~lr [In(:o-=-\)J 2} U(n

This is a lognormal density function with two parameters (no and (JNn~) [9), and A(X) has
the following statistical properties:

E{fi} = 1+ (no -1) expH(~N~~lr} > no (14a)

(J; = (no _1)2 exp{ (::~~l) 2} [exp{ (::~~1) 2} -IJ > «(JNn~)2 (14b)

Cn(X 1 -X2) = (no-l)2exp{(~N~~r} [exP{(non!l)2CN(Xl-Xl)} -1]. (l4c)

2.2. Lateral vibration oj axially creeping beam

As a specific problem consider the free lateral vibration of a nonlinear Maxwell beam,
which is subjected initially to a prescribed deterministic axial tensile force followed by a
small lateral disturbance at T = O. The space coordinate X in this problem will be chosen
as the neutral axis of the beam which vibrates in the XZ plane. Thus, ux(X, Z; T) and
eAX, Z; T) are random functions of X, Z and T. We make the physically plausible assump
tion that the deformation of the beam is small. Using the perturbation technique employed
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in obtaining equation (7), the classical strain-displacement relation and equation of
motion for a beam yield the following relations in the first order terms:

(15)

aw(x, 1')
-p aT +Q. (16)

In equations (15) and (16) the lateral velocity ~X, T) and bending moment M(X, T)
= fA fjAX, Z; T)Z dA are random functions of X and T for a beam with cross-section A;
p is the linear density of the beam and Q is an impulsively applied deterministic distributed
lateral load which induces a free vibration. Note that, in conformity with the small deforma
tion assumption, the moment due to the axial tensile force Po has been neglected.

For convenience, we introduce the following nondimensional quantities:

A( ) _ W(X, T)
w x,t - W

m

X
x=-

L'
(17)

In these equations, Wm is the maximum lateral velocity along the beam at the instant
T = 0; L is the length of the beam; and w(x, t), m(x, t), q, t and x are the nondimensional
lateral velocity, bending moment, lateral load, time and axial coordinate respectively.

Two simultaneous differential equations in velocity and bending moment, containing
a random process coefficient, may now be obtained from equations (7), (15), (16) and (17) as

aw(x, t) a2 m(x, t)
-a-t- = - ax2 +q

1 a2w(x, t) am(x, t) 1 - A

-b a 2 = a +-0"(x)n(x)m(x, t).
x t no

Here, b is a nondimensional deterministic constant given by

b = pL4(Etco no) 2

EI (Jxi

(18)

(19)

(20)

with I indicating the second moment of area. We observe that j and nappear in equation
(19) side by side. Furthermore, j and nhave a similar statistical behavior, i.e., they are
both lognormal [equations (10) and (13)]. Thus, the random temperature problem and the
random imperfection problem are mathematically equivalent. We shall therefore only
present the details for the random temperature problem but will give the final results for
both problems.

In Section 3 we shall consider the analysis of equations (18) and (19) for the case where
j and n are random processes which are only slightly random [case (a)], and then in
Section 4 the case where j and nare random variables which are largely random [case (b)].
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3. CASE (a)-h AND ii RANDOM PROCESSES (SLIGHTLY RANDOM)

(21)

3.1. Random temperature problem

Let us first consider the random temperature problem in which as we have noted only
J(x) is random. Letting fl(x) = no, equation (19) becomes

1 01W(X, t) _ MI(X, t) J )A( )
b ox1 - ot + (x m x. t .

(22)

The simultaneous partial differential equations (18) and (21) can be combined to yield the
following two consecutive nonhomogeneous partial differential equations

01m(X. t) $() om(x, t) I a4m(x, t) 1 a2 q
----,--::,--+0 x +- =-

ot2 at b ax4 b ax2

(23)
ow(x, t) 02m(X, t)
-a-t- = -~--+q.

We will assume that the initial conditions at t = 0- are homogeneous and take the load
q as

q = b(t) sin knx k 1,2,3, ... (24)

(25)

(26)

where b(t) is the Dirac delta function and k is the vibration mode. The physical meaning
of these initial conditions and the lateral load will become apparent in the next paragraph.

We may easily convert equations (22) and (23) into two consecutive partial differential
equations with zero forcing and nonhomogeneous initial conditions at t 0+. In so doing
we obtain the resulting equations

a2m(x, t) J() om(x, t) 1 a4 m(x, t) 0
ot2 + x at +b ax'"

ow(x, t) 02m(X, t)

ot ox2

with the initial conditions

om(x.O+) (kn)2 . k
--a:-t- = --b- Sill nx k = 1.2,3, ... (27)

and

w(x. 0+) = sin knx k = 1.2,3, ... ,
aw(x, 0+) = 0

ot . (28)

(29)m(O, t) = m( 1. t)

Equations (27) and (28) hold with probability one. Thus, we observe that the problem
posed in the previous paragraph is equivalent to a free vibration problem with a nonzero
deterministic velocity prescribed at t = 0+.

Let us consider a simply-supported beam. Using equations (25) and (26), we obtain
the following boundary conditions on m(x, t) and w(x, t) respectively:

02m(0. t) a2m(1. t)
---=--- = = 0

ox2 ox2
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and

A A a2w(0, t) a2 w(l, t)
w(O, t) = w(l, t) = ax2 = ax2 = 0. (30)

Again the above relations hold with probability one.
The perturbation method suggested by Keller [8] will now be applied to differential

equation (25) with initial and boundary conditions (27) and (29) respectively.
Bending moment. In this section it is assumed that I(x) is homogeneous random process

which is slightly random, and we may then write

(31)

Here, c; is a small quantity, and 11 (x) is a homogeneous random process. Substituting
equation (31) into equation (25), we obtain

(32)

where

(33)

(34)

The solution to equation (32) is not separable in x and t, and is extremely difficult to
obtain. However, utilizing the perturbation method given in [8], we may obtain an ap
proximate expression for the mean bending moment as

(35)

Here, mo is the solution to the unperturbed deterministic linear partial differential equation

(36)

with the prescribed deterministic initial and boundary. conditions [equations (27) and
(29)]. Also, in equation (35) Lo1 is the inverse operator associated with Lo, and is thus an
integral operator whose kernel is the Green's function G(x, e; t) satisfying

(37)

with homogeneous initial conditions at t = 0-. Note that in equation (35) those terms of
order c; and C;2 satisfy homogeneous initial and boundary conditions.

The solution to equation (36) can be assumed in the form

k = 1,2,3, ... (38)

where T1(t) is a function of time t only. Note that the boundary conditions (29) are auto
matically satisfied by equation (38). Substituting equation (38) into equation (36) yields an
ordinary differential equation in T1 . We now make the additional assumption that the
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vibration is underdamped. Thus, setting (kn)4jb - k> 0 and using equations (27), we
obtain

(kn)2 t12' . k
mo = ---e-' sm rkt sm nx

brk

where the nondimensional frequency is given by

r = J(kn)4 _!)
k b 4'

k = 1,2.3, ... (39a)

(39b)

Next, we must obtain the Green's function satisfying equation (37). A comparison of
equations (36) and (37) indicates that the Green's function is equal to the deterministic
bending moment which results from a unit impulse applied to the beam at the location
x = ~ at time t = O. This Green's function vanishes for either t < 0 or x, ~ ¢ [0, IJ. The
normal modes obtained from the homogeneous part of equation (37) with the prescribed
homogeneous boundary conditions are given by the orthogonal functions

II/x) = sinjnx.

We now try a solution to equation (37) in the form

CL'

G(x, ~; t) = L Ifj(~' t)hj(x)
j= I

whereby

(40)

(41)

(42)

The orthogonality of the normal modes h/x) can be used to reduce equation (42) to
the system of uncoupled equations

j = 1,2,3, .... (43)

Solving equation (43) for Ifj' we obtain with the use of equation (41)

1
i ~ e- t

/
2 sin rjt sin jn~ sin jnx, t ~ 0,0 :-s; x, ~ :-s; 1

G(x,~;t)= j=lrj

0, otherwise

(44)

where rj is defined by equation (39b). Finally, with this Green's function the inverse operator
LoI operating on some function F(x, t) can be given by

LoI F(x, t) = f~f G(x, ~; t r)F(~, r) d~ dr. (45)

Let us now return to equation (35). In order to evaluate the terms of order e and e2
,

we must first determine the mean II and mean square ci of il(x) for r(x) a homogeneous
random process with mean zero and variance (1;. These follow directly from equations (11)
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and (31) as

(46)

(49)

For the term of order £2 we must also specify the autocovariance of r(x)[Cr(I]) where
I] = x t - x 2 ]. The analysis would become extremely complicated if we were to choose an
exponential expression for Cr(I]) as in [5J and [6]. On the other hand, the analysis is much
simpler if we choose an exponential function for the autocorrelation of &t (x), i.e.

E{&I(X I)&I(X2)} = 8i e-I~I/d (47)

where d is the nondimensional correlation distance. The autocovariance of r(x) is then
obtained in inverse fashion from equations (lie), (31), (46) and (47) as

Cr(I]) = In[2 ea~/2 -1 +(e2a~-2 ea~/2 + 1) e-I~I/dJ -a;. (48)

The following limiting values follow from this result :

Lim Cr(I]) = a;
~~o

Lim Cr(I]) = In(2 ea~/2 -1)-a;.
~~oo

(50)

Equation (50) gives a very small negative value for I] ---+ 00, since r has been assumed to
be slightly random (i.e., ar is small). Equation (48) has been plotted in Fig. 1 for typical
values a r = 0·1 and d = 0·2, and we note that we still get a physically plausible exponential
like function for Cr'

Using the deterministic bending moment mo [equations (39)J, the Green's function
G(x, ~; t) [equation (44)J, and equations (45}-(47), we may then proceed to evaluate equation
(35) and thereby obtain the rather complicated result

(kn)2 /2" (kn)2J"1 /2 [( 1 ).E{m} = --b~e-t smrktsmknx+£-2b2 e- t --+rkt smrkt
rk rk 2rk

+ tl2 cos rk] sin knx _£2 2~~)2gi e- t
/
2{dl[(A I + A2t + A 3t2) sin rkt

+ (A 4 t + A st2)cos rktJ sin knx + jtl [d~) sin k.nx + (d~) - d44 bj(3k») sin jnxJ

j*k

. [(AU) + AU)t) sin r t + (AU) + AU)t) cos r t + AU) sin r t + A(j) cos r tJ6 7 k 8 9 k 10 j II j

00 00

+AV~ cos rktJ sinjnx+ L L (2d~j)-d~)bi(k-2j)-dW)bi(k+2j»(AW/ sin rkt
i;Utii

+A~~ sin rit+A~8 sin r}+A~{J cos rkt+A~g cos rit+A~~ cos r}) sin inx} (51)

where bij is the Kronecker delta.
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001

-10 I{)

FIG. 1. Autocovariance of -[---case (a).

In equation (51)

4rf +3
AI=~

k 4rf

4r2 -1A = _k__

3 16rf

A~) =

U) __1_
A 7 - 2 2

r k -rj

4rf -1

4rk(r; - rJ)

-A~)

A
(j)
15

4(r; - r;)(rf - rf)

rk(l- 4r;)

(j) _ -rk

AI4 -") 2 _ 2)_r)rk rj

- rk(l- 4r;)

8r;(rf -r;)

4rf -1

A(ij) 
20 -

A(ij) 
18 -

AU) _ rk[2r;(4rf -1)+(l-4r;)(rf -r;)]
13 - 8rJ(rf - r;)2

A(j)
8

2

Alij) 
21 - (rf -r;)(rf -r1)

A (ii) 
22- (rf - r;)(r; - r1)

(52)
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and

3+ 8d2k2n2 8d2k4n4
dl = + 2 (e-I/d_l)

4dC I C I

(jl _ljd2+(k2+/)n2 8k2/n4[(-l)k- j e-l/d-l]
d2 - 2dC~)C~) + (dC~)C~»)2

(j) _ 4k 3jn4 [1 +( -1)k- j ](e- l /d -l)

d3 - C I C~)C~)

where

1
d4 = dC

1

(j) _ 4kln4[1+(-I)k-j](e-I/d-l)

ds - C~)C~)(ljd2 +4/n2)

(j) _ 1
d6 - 2dC~)

.. 4i/kn4 [(( - 1)i - j + (- 1)k - j) e - lid - (l + (_ l)i +k - 2 j )]
d(I]) - ----'-----=-"~-----,-c_______,c-----~~-~-----=-~_--=.

7 - d2C~)C~)(ljd2 +(i - Nn 2)(ljd2+(i + j)2n2)

U) __I_
ds - 2dCU)

2
(53)

(54)

As a particular example we will consider the beam treated deterministically in [7],
namely a uniform rectangular cross-section beam made of aluminum alloy 1100. The
cross-sectional dimensions are taken to be 2 in in width and 3 in in depth, and the length of
the beam is taken as 36 in. The mean temperature of the beam is chosen as 260°C and the
axial stress ax; = ac is taken equal to 3000 psi. The material properties are given in Table 1
(see [7]).

TABLE I. MATERIAL PROPERTIES OF

ALUMINUM ALLOY \\00 (260°C)

p = \.2x 10- 10

E = 8·0x 106

no = 4·55
..1 0 = 3·64 X 103

lb-h'.in - 2

psi

psi_hI/no

Using the data given in the previous paragraph and in Table 1 and taking the vibration
mode k to be one, we obtain the numerical values given in Table 2.
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TABLE 2. NUMERICAL VALUES

in~1=4·5

(
a ,)no

£,0 = ~ = 0-415
1'0

PL~(E£ II )2b=-~ = 1-419xlO-~
EI axi

J(
(krr)~ I)

r. = -b--4 = 828·68 for k = I

[equation (4)]

[equation (20 I]

[equation (39b)]

It may be seen from Table 2 that, as a consequence of the small damping in this example
(b« I), r1 » I and Ir]-rfl» I for j # i. We then find that, for any values of (JT and d,
the expression of order [; in equation (51) is completely dominated by the rkt sin rkt term
and the expression of order [;2 is completely dominated by the d I A 3 t2 sin rkt term. Thus,
we may now considerably simplify the expression for E{ m], with negligible loss in ac
curacy, to the following form which is separated in x and t:

(55)

(56)

With the use of equations (17), (20), (39b) and (52), equation (55) may be rewritten in
terms of the physical parameters and dimensional time l' (in seconds) as

E{:*} = (I -[;JI aT+£22d ICIa2T2)e -aT sin f3Tsin nx

where

a= _1_(El!cono)
7200 (Jxi

I (n)2JEI
f3 = 3600 L P (57a)

and where m* is a normalizing factor defined as

(57b)

(58)

In the present example a = 0·7 and f3 = 1158·7, and thus we see that as a consequence of
small damping f3 » a.

For practical purposes it is sufficient to confine our attention to the time interval over
which the exponential function in equation (56) decays to one per cent of its initial value,
i.e., 0 s Ts 4·6/a. Within this interval, we will consider that the "slightly random"
assumption implies that [;22d I CIa2 1'2 « 1 in equation (56). This requires that

- { [3+8d2n2 8d2n4(e-I/d-l)]}-1
[;2CI = e

211
; - 2 e

l1

;/2 + 1« 42·32 4d(I/d2 +4n2) + (l/d2 +4n2f

Equation (58) will be used as a condition on (JT for a given d.
In Fig. 2(a), a single curve showing the decay ofE{m/m*kMP(LMP = locus of maximum

points) for the mean bending moment [equation (56)]] at the midspan of the beam (x = t)
is plotted vs time Tin seconds for typical values (JT = 0·1 and d = 0, 0·2, <Xl-all of which
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a.

"~-
_----------------------,1.0

x=0'5

d=0,0'2, OJ

k =1

0'5

OLO~--...I---2.a....---..J3-=::~4::::==::::5~==~6~6.50

r
0002,.-----------------------,0002
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~

~o

I<~
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'---'

--------------- 0

- CTT =0·1 (Random temp. prob.)

---- CTNno' =004 (Random imp. prob.)(b)

o' 2 3 4 5 6 65
r

FIG. 2. Decay curves--{;ase (a). (a) LMP of mean bending moment and velocity. (b) deviation from
LMP of deterministic bending moment and velocity.

(59a)

satisfy condition (58). The deviation of the LMP of the mean bending moment from the
LMP of the deterministic bending moment, [E{m/m*} -mO/m*]LMP' has been plotted in
Fig. 2(b) (solid curves). Note that for d > 0 this deviation vanishes at a root I' = 1;, and
that the LMP of the mean bending moment is less than the LMP of the deterministic
bending moment in the interval 0 < I' < 1;, and is greater for I' > 1;. We also see that
there exist two critical times I'min and I'max where the random effect is an extremum. We
obtain 1; and these two critical times from equations (56) and (57) as

- J tT = -', 2w t 8'irx

1'min _ 1', ~ - )(7'; ~)
T- -2++ 4+ 2 '

max rx rx
(59b)

(60)

With (iT = 0·1 and d = 0·2 in this example equations (59) yield 1; = 3·147 sec,
I'min = 0·877 sec and I'max = 5·131 sec, which approximately equal 580, 161 and 946 cycles
of vibration respectively. Also, for these values equations (ila) yield E{ J} = 1·005, and
Fig. 2 yields E{m/mO}LMP = 0·9977 at I' = I'min = 0·877 sec. Thus, the bending moment is
sensitive to small variations in temperature.

Velocity. Turning now to the velocity, we obtain from equation (26)

o 02

o/E{w}) = - ox2(E{m})

for w(x, t) and m(x, t) mean square differentiable with respect to time t and axial coordinate
x respectively. Substituting equation (51) into equation (60), integrating the result with
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respect to t, and then using initial conditions (28), we obtain

+Jl [d({)(kn)2 sin knx + (d~) - d; bj(3kl)Un)2 sin jnxJ(B~)+ B¥)t) sin rkt

j*k

,.x' rf.)

'. "" (2d(i j) dUj s; dUl s: ) (. )2(B(ij) .·sm}nx+ L. L. 7 - 6 Ui(k-2jj- 8 Ui(k+2j) m 18 smrkt
i= 1 j= 1
i*k*jol'i

+ B(ijj sin r.( + B(ijj sin r·t + B(ij) cos r t + B(ij) cos r·t + B(ijj cos r .t) sin in x} (61)19 I 20 J 21 k 22 I 23 J ••

In equation (61)

BUj-~
7 - rf -r;

U)
BUl-~9 -

2rk

rk(rf - 3r;)
4r](rf _r;)2

BU)
17 B(ijj 

18 - 2(rf - r; )(r; - r?)
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B(ij)
20

B(ij)
22

(r~ - r~)(rJ - r~)

(i ') rk (62)
B2~ = - (rJ - rD(r~ - rJ)"

Again as a specific example we will consider the beam with small damping discussed
in [7]. Proceeding as in our analysis of the bending moment, we find that the expression
of order 1 in equation (61) is completely dominated by the rkcos rkt term, the expression
of order e is completely dominated by the t cos rkt term, and the expression of order e2 is
completely dominated by the d1 Bst2 cos rkt term. Thus, we may in this case considerably
simplify equation (61) for E{w}, with negligible loss in accuracy, to the following form:

E{ It'} = (1- eel rtT+e22d 1Cfrt2 1'2) e -<Xl' cos f3Tsin nx. (63)

Here, Tis the time in seconds, and rt and f3 are as defined in equations (57).
The expression for E{ w} given by equation (63) is identical with the expression for

E{ m/m*} given by equation (56) except that sin f3T is replaced by cos f3T. Since f3 » 1,
these two expressions give essentially the same locus of the maximum points. Thus, Fig. 2
also applies in this case. The velocity is clearly sensitive to small fluctuations in tem
perature.

3.2. Random imperfection problem
As we have previously stated, the random imperfection problem and the random

temperature problem are mathematically equivalent. Instead of using equation (31) we
start with the relation

(64)

where nl(x) is a homogeneous random process. Its mean iii and mean square nf are ob
tained from equations (14) and (64) as

(65)

(66)

The autocorrelation of n1(x) is assumed to be

E{n l (x l )n l (x2)} = nf e-Iqfld (67)

based upon the same argument given in Section 3.1.
Proceeding as in the random temperature problem, we obtain the same results [i.e.,

equations (51), (56), (58), (59), (61) and (63)] with the substitutions

(68)
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The curve shown in Fig. 2(a) also applies in this problem for values aNna = 04 and d = 0,
0·2, oo-all of which satisfy condition (58) with the substitutions (68). The deviation of
the LMP of the mean bending moment and of the mean velocity from the LMP of the
deterministic bending moment and velocity have also been plotted in Fig. 2(b) (dashed
curves). For the values aNna = 04 and d = 0·2, equations (59) with the substitutions (68)
yields E{n/no} = 1·005, and Fig. 2 yields E{m/mO}LMP = E{ W/WO}LMP = 0·9974 at T = Tmin

740, 179 and 1088 cycles of vibration respectively. Also, for these values equation (l4a)
yields E{n/no) = 1·005, and Fig. 2 yields E{m/mO}LMP = E{Mwo}LMP = 0·9974 at T = Tmin

= 0·973 sec. Thus, the bending moment and the velocity are also sensitive to small
variations in imperfection density.

We conclude that both bending moment and velocity are sensitive to small fluctuations
in temperature and in imperfection density. This differs from the results obtained for the
3-bar truss in [5J and statically loaded beam in [6], where the stress was essentially deter
ministic and only the velocity was sensitive to fluctuations in temperature and in
imperfection density.

4. CASE {b}-J AND fi RANDOM VARIABLES (LARGELY RANDOM)

4.1. Random temperature problem

Again let us first consider the random temperature problem in which only g is random.
In this section if is taken to be a random variable which is largely random. Thus, whereas in
equation (31) emay no longer be used as a perturbation parameter, J1(x) is simply a random
variable J1 • It follows that the consecutive differential equations (25) and (26) may be
simplified to two uncoupled linear differential equations in m(x, t) and w(x, t), each with
a random constant coefficient, i.e.,

02m(X, t) ,?om(x, t) ~ 04m(X, t) _ 0
(it 2 +g at +b ox4 -

02W(X, t) -;;ow(x, t) 1 04W(X, t) _ 0
ot2 +6'-o-t-+"b ox4 -.

(69)

(70)

The deterministic initial conditions are given by equations (27) and (28), and the deter
ministic homogeneous boundary conditions are again given by equations (29) and (30).
Note that whereas equations (69) and (70) are identical, the initial conditions on mand
ware different. We shall only present the details of the velocity solution but will give the
final results for both velocity and bending moment.

Velocity. The solution to equation (70) is separable, and may be expressed as the
product of a random function of time and a deterministic function of space in the form

w(x, t) = T2(t) sin knx k = 1,2, 3; ... , (71)

Substituting equation (71) into equation (70), solving the resulting ordinary differential
equation in T2(t) with the initial conditions (28), and using equations (17), (20) and (57),
we obtain the velocity for the underdamped case (J < (Jk 2/r:x) as

w(x,t) = r:x.j[({Jkf;~:2 _ j2Je-'CT sin(r:x.j[({Jk2/r:x)2-$2JT+8) sin knx k = 1,2,3'00' (72)
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where the phase angle is given by

- -1 (J[(pe /a)2 - j2]) (73)e= tan i .

Since there is zero probability that j in this case is greater than pk 2/a, the lognormal
density function for J [equation (10)] must be replaced by a truncated lognormal density
function. Thus, we let

I { (In ~Y}f(~) = J "exp - -2- [U(8) - U(C - pk2 /a)]
0 1 (2re)IT,~ 2IT,

and

n _ 1 f [In({3k
2MJ

H1 - 2 +er
IT,

(74b)

(76a)

where 0 1 is such that equation (74a) satisfies the normalization condition. Note that
erf x is the error function defined as

erf x = J(~re) fa' e-
y1

/
2 dy. (75)

The mean E{ J} and variance IT~ based on the truncated lognormal density function
[equation (74a)] are given by

E{J} = H 1e<1;/2

0 1

and

where

I f (In({3k
2
/a) - IT;)HI = I+er
IT,

H - 1 f(ln({3k
2
/a)-2IT;)

2 - 2 +er .
IT,

(76b)

(77a)

(77b)

Expressions for the first order density function and the statistical moments of w(x, t) may
be found from equations (72) and (74). For example, the mean velocity is given by

{ (
_ (1n C)2)}

{3k
2 . k fJk2/~ exp - aiS'T+-

2
2

fA} sm rex f IT, . / 2 2 2 - e ' 78
Elw = a0

1
J(2re)IT, 0 0"J[({3k21rx)2_82] sm(av[({3k /a) -is' ]T+ ) diS'. ( )

Decay curves for the mean velocity [equation (78)] at the midspan of the beam dis
cussed in the previous section with k = 1, and IT, = 0·2 and 0·5 are presented in Fig. 3.
In this example {3 » a (small damping), and as a result the normalization factor 0 1 is very
close to unity [equation (74b)] and the density function of the phase angle {j is sharply
peaked around re/2 [equation (73)]. Results have also been obtained for IT, = 0·1 in the
present case (not plotted in Fig. 3) and these results checked very closely with the curves
for IT, = 0·1 and d = CIJ in Fig. 2 for case (a). For these values of IT, and d, J in both cases
is essentially a random variable which is only slightly random.
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FIG. 3. Decay curves~ase (b). (a) LMP of mean velocity and bending moment. (b) Deviation from
LMP of deterministic velocity and bending moment.

The logarithmic decrement D, a quantity widely used as a measure of damping, is
given by the expression

(79)

where WI and rt2 are the velocities at two successive maxima. It then follows from equation
(72) that

~ 2ng
D= .J[(pejCX)2 - g2]"

Also, the circular frequency in cycles per second follows as

A cx.J[(Pk2M2- g2J
w= .

2n

For convenience, we rewrite equations (80) and (81) in nondimensional form as

<5 J.J[(Pk2M 2 -IJ
Do = .J[(Pk2jcxf - j2J

cD .J[(Pk2M2- g2J
W o = .J[(pejcx)2 -IJ

where Do and Wo are the nominal values (at f = To) given by

(80)

(81)

(82a)

(82b)

D _ 2n
o - .J[(Pk2jCX)2 - 1J (83)
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Given that Cis truncated lognormal [equation (74)J, the density functions of b/Do and
w/wo follow from equations (82) as

f(~) = Yi[(Pk2/a)2-1]exp{_[ln(Yl(Pk2/~)(D/Do)W}u(~) (84a)
00 (%o)QIO",y'(2n) 20", (jo

and

[( 0)2 (Pk2)
2 J- t

Y1 = - + - -1
Do a

(84b)

Equation (84a) has been plotted in Fig. 4 for the previously discussed example (solid
curves) with k = 1 and typical values for O"r' The lower limit on the logarithmic decrement

2·5r----.,..---~--....,.---....,..--__r----,r-----.

2·0

15

o
GO
"
GO

..... 10

05

o

"t \.--u.v";=O'8
I \
I \
I \
I \

\

1·0

-- Random temp. prob.

---- Random imp. prob.

k=1

3·0 35
8/80

FIG.4. Density function of bf{>o---f;ase (b).

(o/fJo = 0) corresponds with rff = 0, while the upper limit (fJ/fJo --. (0) corresponds with
the cutoff t! = p/a. Equation (85a) has also been plotted in Fig. 5 (solid curves) for the
same values of k and (Jr' Here, the lower limit on the circular frequency (w/wo = 0) cor
responds with the cutoff t! = PIa., while the upper cutoff (wlwo = <Pla)/y'[(Pla)2 -1])
corresponds with t! = O.

The means and the standard deviations of 3/fJo and w/wo are readily obtained by
numerical integration. For (Jr equal to 0·2 and 0·5, values of these statistical properties and
those for j [equations (Il)] are given in Table 3.
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FIG. 5. Density function of m/wo---case (b).

TABLE 3. MEANS AND STANDARD DEVIATIONS OF J/bo AND m/wo

(J,

0·2
0·5

1·0202
1·1331

0·2061
0·6039

1·0202
1·1331

(Jd/Of)

0·2061
0·6039

E{m/wo)

0,999999
0,999590

(Jw/wo

0·0012
0·0203

(87)

It may be seen from Table 3 that in this example the statistics of the logarithmic decre
ment are numerically equal to the statistics of the material parameter J. This follows
directly from equation (82a) since the density function of J peaks near value 1·0 and
fJla » 1 (small damping). Applying the same argument to equation (82b), we find that
the density function of wlwo is very sharply concentrated near 1·0, and this is apparent in
Fig. 5 and Table 3. Thus, we find in this example that whereas the logarithmic decrement
is sensitive to fluctuations in temperature, the circular frequency is almost insensitive to
such fluctuations.

Beruiing moment. Since equations (69) and (70) with their associated initial and boundary
conditions are mathematically similar, we may proceed in an analogous manner to obtain
the bending moment and its statistics. We obtain for the bending moment

-(f3W'- ~ -
m(x. t) = 2n2a\/[(f3k2I

a
f _J2] e -~CT sin(a~[(fJk2la)2 - P]T) sin knx k = 1.2.3.... (86)

and for the mean bending moment

{ (

0- (In 8i)}
{

m} fJk2 sin knx f(lk2(~ exp - a6 T+~ . _
E m* = aQl~(2n)O"r 0 8~[(fJk2Ia)2_g~] sin(a~[(fJk2Iaj2-82]T)d8'

where m* is defined in equation (57b).



Damped lateral vibration in an axially creeping beam with random material parameters 785

The expression for E{ m/m*} given by equation (87) is identical with the expression for
E{ w} given by equation (78) except that here the phase angle () is equal to zero. Due to the
high frequency in the previously discussed example we may expect that the locus of maxi
mum points in that example is the same for bending moment and velocity. Thus, Fig. 3
also applies in this case. Likewise, equations (82), (84) and (85) for 8/()o and w/woand their
density functions also hold for the bending moment solution. Thus the bending moment
and its logarithmic decrement also show significant random fluctuations as the tem
perature fluctuates.

4.2. Random imperfection problem

Velocity. We now turn to the random imperfection problem in which only nis random.
In this problem w, 8/()o and w/wo can be easily obtained from equations (72), (73), (82) and
(83) in the random temperature problem with the substitution

(88)

Now, ()o and Wo are nominal values evaluated at IV = No. The underdamped restriction
in this problem requires that

where

r/ = rx/no.

(89a)

(89b)

Again, since there is zero probability that nin this case is greater than fJk 2 /rx', the log
normal density function for n[equation (13)J must be replaced by a truncated lognormal
density function. Thus, we write

The mean E{n} and variance a; are then given by

(91a)

(91b)

where

(92a)

(92b)
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Given that Ii is truncated lognormal [equation (90a)], the density functions of J/Jo
and w/wo are obtained from equations (82) with substitution (88) as

Equations (93a) and (94a) have been plotted in Figs. 4 and 5 respectively (dashed
curves) for the previously discussed example with k = 1 and typical values for (JNn~. The
means and the standard deviations of J/Do and w/wo are also readily obtained. For
(JNn~ = 0·8 and 2·0, values of these statistical properties and those for Ii [equations (14)]
are given in Table 4.

TABLE 4. MEANS AND STANDARD DEVIATIONS OF J/bo AND ill/wo

0·8
2·0

1·0201
1·1342

an/no

0·1827
0·5589

1·0201
1-1342

0·1827
0·5589

0·999938
0·994273

(jro/wo

0·0079
0·0755

As in the random temperature problem we find that in this example the statistics of the
logarithmic decrement are numerically equal to those ofn/no. and that the density function
of w/wo is very sharply concentrated near one. Thus. we again find that whereas the
logarithmic decrement shows significant random fluctuation as the imperfection density
fluctuates. the circular frequency is almost deterministic.

Bending moment. The bending moment for the random imperfection problem may be
obtained from equation (86) with the substitution (88). We then find that the statistics of
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the bending moment are identical with those of the velocity, and thus require no further
discussion.

5. SUMMARY OF RESULTS

The present study is an investigation of the effect of randomness in the material
parameters ec and fl on damped lateral vibration in an axially creeping beam. The random
ness in these parameters results from randomness in the temperature and imperfection
density, which have been assumed to be independent homogeneous normal random
processes. Two separate cases have been considered, i.e., (a) tff and fl random processes
which are slightly random, and (b) g and fl random variables which are largely random.
In each case the problem has been separated into two uncoupled parts-the "random
temperature problem" and the "random imperfection problem". In the random tem
perature problem only ec is random, whereas in the random imperfection problem only
n is random. For both cases a simply-supported nonlinear Maxwell beam made of
aluminum alloy 1100 has been taken as an example. In this example the damping is small,
and the vibration is underdamped.

In case (a) we have obtained the mean bending moment and velocity by using ex
ponential-like autocovariances for the temperature and the imperfection density. As a
consequence of the small damping, very simple and useful expressions for the mean
bending moment and the mean velocity have been obtained. Two critical times, where the
effect of material parameter randomness on the bending moment and velocity is an ex
tremum, have been found. It has been observed that both the bending moment and velocity
are sensitive to randomness in temperature and in imperfection density. This differs from
the results obtained for the 3-bar truss in [5J and statically loaded beam in [6J, where the
stress was essentially deterministic and only the velocity was sensitive to such randomness.

In case (b) we have found the means of the velocity and the bending moment. Com
paring these means with those in case (a), we have observed that the two cases give
equivalent results when the correlation distance in case (a) is large and the standard
deviation in case (b) is smalL The statistics of the logarithmic decrements and circular
frequencies for the velocity and bending moment have also been presented. It has been
found that as a consequence of the small damping the velocity, bending moment and their
associated logarithmic decrements are sensitive to randomness in temperature and in
imperfection density, whereas the associated circular frequencies are almost deterministic.
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A6crpaKT-ltIcCJICnYCTClI 3aTyxafOillce noncpc'moc KOJIc6cHHC 6aJIKH C OCC60H nOJI1Y'lCCTbfO H cJlY'laHHbIMH
napaMcTpaMH MaTepHaJla. TCMnepaTypa H nnOTHOCTb HCnpaBHJIbHOCTCii, H B pC1yJIbTaTC, ,Il,Ba HcynpyrHx

napaMCTpa MaTepHaJIa lIBJIlIfOTCll: CJIY'laHHbIMlf <!>YHKI.{HlIMH paCCTOllHHlI B,Il,Onb HCHTpaJIbHOii OCH. npc,Il,

nonaraeTClI MaTepHan 6aJlKH B BH,Il,e MO,ll,CJlH MaKCBeJIJIa, H TaKlKe, 'ITO Ha'laJIaJIbHOe Hanpll:lKeHHe
pacTlIlKeHHlI 1Ha'lHTCJlbHO 60JlbWe no cpaBHcHHfO C npHpocTOM HanplllKeHHlI BCJIe,ll,CTBHe KOJIe6aHHlI.

3aTeM, MOlKHO npHMeHHTb MeTO,ll, B01MYIllCHHH. ItIcclle,ll,YfOTclI nOJlHOCTbfO ,ll,Ba Cnel.\HaJlbHblX CJIy'lall: /a/
cnY'laHHble napaMeTpbl ll:BJIlifOTCli CJIY'laHHblMH npOl.{eccaMH, KOTopble TonbKO CJICrKa CJIy'taHHbl, /6/

CJIyqaHHble napaMeTpbl lIBJIliIOTCll: CJIyqaiiHblMH nepeMCHHbIMH, KOTopble B 1HaqHTeJIbHOii Mepc cny'laHHbI.

norryqalOTCll: CTanICTH'IeCKHe pe)ynbTaTbl ,Il,,ll,1I nonepe'lHqH CKOPOCTH, MOMeHTa H1rH6a, norapHlpMH'IeC
Koro ,Il,eKpeMeHTa H KpyroBoH qaCTOTbl. HaXO,ll,HTClI, 'ITO ,Il,JIll: CneI.\H(jlH'IeCKOrO npHMepa 6anKH, H3roTO
BnCHHOH H1 amOMHHHeBoro CnJIaBa, nOnepeqHall CKOPOCTb, MOMeHT H3fH6a H llorapH(jlMH'IeCKHii

,ll,CKpeMeHT qYBCTBHTenbHbl K clly'laHHocTH TeMnepaTypbl H 1l1l0THOCTH HenpaBHllbHOCTCH, TOf,ll,a KaK

KpyroBali qaCTOTa nO'lTH ,Il,CTepMHHH'IeCKa.


